改变微纳米曝气器的通气量,随空气流量的增加,氧传质系数(Km)逐渐增大。标准氧传质效率(SOTE)随曝气量的增大而降低。结果表明,水温度对KLa和SOTE均有显著影响,随温度升高,PH升高先降后升,在pH=7.2时达到小。随着NHQ的增加,曝气组比例降低,且随浊度增加而增加。SOTE值随温度的升高而增大,与微孔曝气组的趋势一致,但其值小于微纳米曝气组。与SOTE相比,微纳米曝气比SOTE对通气量的变化更为敏感。
微纳米气泡的关键特点如下:
(I)
微纳米气泡体积比一般气泡小很多,水的浮力也小,所以上升缓慢,纳米气泡在上升过程中会继续收拢,终在水中融化消退。汪敏刚等I38对微纳米气泡为人眼所见的乳白色出现时间(关键以微米气泡为主)进行了反复准确测量求平均值的科学研究,测量数据显示微纳米气泡在水中的悬浮时间为5分钟左右。
(I)
微纳米气泡页面会吸引带负电的正离子(如OH-),产生表面正电荷的正离子层;空气负离子会吸引带正电的正离子(如H+),在表面正电荷的正离子层周围产生正电荷,这也是微纳米气泡页面的双电层结构39,如图0-2所示。双电层促进气泡之间的排斥,使气泡无法相互结合,气泡在溶液中的均匀分布40o双电层正电荷引起的电位差。Z电位差越高,吸附功能越高。
还原性强
微纳米泡破裂后,由更高浓度的正离子气-水分子聚集的机械能在一瞬间释放出来,使H2O溶解形成具有强氧化性的羟基自由基(·0H)I3"]。Zhang等四在衰减系数全反射傅里叶变换红外光谱技术(ATR-IR)的基础上发现,一旦破裂,高能的纳米气泡破裂,在水中生成大量的羟基自由基(2.07V),具有很强的氧化能力(2.07V),能够氧化分解有机物,净化处理水体。
(VI)的氧对流换热。
随着微纳米泡直径的减小,气泡的比表面积继续增大,界面张力促使内部标准压力不断增大,使得大量的O2按照气-水相界面融入水相培土壤。由于气泡存在于水中的时间较长,气体与药液接触的时间越长,而且气泡堆积密度越大,促使气体接触液面的距离也随之扩大,O2的使用率因此提升"I。