微米级曝气在日本的应用较早,不仅用于工业废水、河流治理,还用于养殖.畜牧.食品工业等行业,在河道及湖泊净化等方面的研究与应用,已有70多个研究和应用案例。2008年,Shaip公司将微纳米曝气技术与微生物技术相结合,处理一家日流量在200m3左右的污水厂,取得了良好的效果,使TN去除率达到90%以上。
我国对微纳米曝气技术的研究起步较晚,但随着其技术交流和应用的不断开放,微纳米级曝气已逐渐应用于国内一些项目,并取得了良好的治理效果。
利用微纳米曝气技术,在广州白云湖水质改造工程中,采用微纳米曝气技术,使湖的上游进水水质得到明显改善,曝气装置对水体的溶氧改善效果良好,曝气地点下游水体的溶氧状况有很大改善,整个下游水体DO提高3Mmg/L,各水质指标均有所提高,相关研究表明,泡的大小与停留时间成正比"。范海涛“J”等研究发现,微孔曝气也可以产生较小的气泡,但在气泡上升过程中可能发生合并,使得气泡变大,从而间接降低了气泡比表面积,从而使比表面积变小,从而受到浮力的影响,使水泡更快地排出水面。减少了气泡在水中的停留时间,对气液氧传质不利。
天津市水文局、天津市水文局、天津市水文局、天津市水文局、天津市水文局、天津市水文局等单位利用微纳曝气装置和射流曝气装置,对天津水利部城市水环境改善示范基地进行了通气改造,该工程占地面积为320000平方米。增加水体氧含量,克服了冬季运行技术难题,主要指标达到地表水IV类标准。
郝明伟[8°]主要对水中微纳米气泡的运动规律和沉降机理进行了研究,并对日本微型纳米曝气装置气泡发生器结构原理进行了研究。并对某河流曝气水质进行了改进试验,认为微纳米级曝气是一种较好的改善水体水质环境的技术。
用微纳米曝气法进行的植物浮床处理河道支溪水氮化试验表明,微纳米级曝气浮床技术对河道底泥进行了脱氮试验,结果表明:微纳米级曝气浮床技术对河道底泥进行了脱氮试验。通过对攻.NH4+-N去除率分别达到70.31%.63.25%o洪涛及其他利用微纳米曝气技术处理黑臭水体的研究结果,微纳米曝气技术对黑臭水体中TP.NHZ-N和COD&去除率分别达21.4%.40.3%和39.1%。我国对微纳米曝气技术的研究并不多见,研究的是微纳米粒曝气在黑臭水体的修复效果,对于微纳米曝气过程中氧传质的变化鲜见报道。
微纳米曝气组成微生物菌种技术改善水利枢纽水质。科学研究结果表明,在实施微纳米曝气的几年内,曝气区表面溶氧平均值为9.5mg/L,而非曝气区为8.7mg/L。在底层水质中,曝气区平均值为8.8mg/L,非曝气区平均值为7.8mg/Lo。2018年溶氧平均值为8.9mg/L,2019年升至9.6mg/L。水利枢纽pH值变化区域为7.04~8.61o,水质清晰度从上下游水质清晰度不到1m,再到曝气区域为1m1.5m。2018年清晰度平均值为1m,2019年清晰度平均值提高到1.1m。水利枢纽上下游非曝气区高锰酸盐指数均为1.06mg/L;曝气区二期和中下游高锰酸盐指数均为0.92mg/L;2018年曝气区一、三期高锰酸盐指数均为0.88mg/Lo,2019年降至0.94mg/L。水利枢纽上下游非曝气区总磷值为0.57mg/L,曝气区二期和中下游总磷值为0.039mg/L;曝气区一、三期总磷值为0.033mg/L。2018年总磷浓度值平均值为0.044mg/L,2019年总磷浓度值平均值降至0.042mg/Lo水利枢纽上下游非曝气区可溶活力磷平均值为0.010mg/L;曝气区二期和中下游可溶活力磷平均值为0.008mg/L;2018年曝气区一、三期可溶活力磷平均值为0.007mg/L,2019年SRP平均值为0.008mg/L。水利枢纽上下游非曝气区叶绿素a均值为8.27ugL;曝气区二期和中下游叶绿素a均值为6.17ug/L;曝气区一、三期叶绿素a均值为4.30ug/L。2018年叶绿素a总平均值为6.45ug/L,2019年总平均值降至6.04ug/L。曝气区二期藻类总产量减少率为22.1%;曝气区一、三期藻类总产量减少率为34.5%,春季藻类总产量减少率为27.1%;夏季藻类总产量减少率为31.9%;冬季藻类总产量减少率为25.9%。夏季藻类植物总产量较高,因此减少率也较高,其次是春季和冬季。藻类总产量的平均减少率为28.3%,蓝藻的平均减少率为33.9%,藻类的平均减少率为34.4%,硅藻泥的平均减少率为18.7%o微纳米曝气成分。微生物菌种技术对不同类型的藻类有一定的减少作用。2018年藻类总进化率平均为7.2x106cels/L,2019年藻类总进化率平均降至7.1*106cels/L。
还原性强
微纳米泡破裂后,由更高浓度的正离子气-水分子聚集的机械能在一瞬间释放出来,使H2O溶解形成具有强氧化性的羟基自由基(·0H)I3"]。Zhang等四在衰减系数全反射傅里叶变换红外光谱技术(ATR-IR)的基础上发现,一旦破裂,高能的纳米气泡破裂,在水中生成大量的羟基自由基(2.07V),具有很强的氧化能力(2.07V),能够氧化分解有机物,净化处理水体。
(VI)的氧对流换热。
随着微纳米泡直径的减小,气泡的比表面积继续增大,界面张力促使内部标准压力不断增大,使得大量的O2按照气-水相界面融入水相培土壤。由于气泡存在于水中的时间较长,气体与药液接触的时间越长,而且气泡堆积密度越大,促使气体接触液面的距离也随之扩大,O2的使用率因此提升"I。