微纳米气泡引起的羟基自由基还原性高,给饮用水消毒和液体表面清洁带来很大潜力。许多使用案例也证实了该技术的有效杀菌和成本低廉。Sumikura等24研究了活性氧微纳米气泡对大肠埃菌的消毒杀菌作用,获得了活性氧的消毒杀菌效果。微微纳米气泡产生的振波是导致 大肠埃希菌降解的主要因素。Chen等25产品开发了一套活性氧微纳米气泡发生装置,用于淋浴消毒,避免病原菌生长,应用效果明显优于传统超声波振动法。Broekman等26研究发现,微纳米气泡在高频节能超音波应用中可以有效消除附着在固体化学物质表面的细菌和藻类。Tian等27科学研究了微纳米气泡对陶氏反渗透膜积垢的清洗效果,发现回转曝气清洗效果优于空隙式。
微纳米气泡发生装置主要由发生装置、微纳米曝气头和连接管组成。由曝气头根据循环泵充压。在离心作用下,使其内部产生负压区,气体根据进气口进入负压区,在罐体内部分为附近的液体带和核心汽体带,由高速运行的气石排气部下气体匀称切成直径5~30|^m的微纳米气泡。由于气泡微妙,不会受到水中气体溶解的危害,不会受到温度、工作压力等外部标准的限制,可长期停留在污水处理中,具有的气浮机实际效果。
微纳米曝气改善水体的主要作用。
溶解氧是清洁水质的主要原因之一。高溶解氧有利于溶解水环境中的各种污染源,使水质迅速净化;相反,溶解氧低,水质中的污染物溶解缓慢。微纳米曝气技术对改善水体有以下几个方面。
(1)去除有机化合物的破坏和黑臭:由于微纳米气泡停留性强,可以带来更充分的O2。在丰富多彩的好氧细菌标准下,有机化合物的环境污染指标值COD和BOD显著降低,黑臭消退。同时,去除了水质底部有机化合物溶解引起的甲烷气体、氯化氢等有害有害物质。
(2)降低水质营养盐成分:由于微纳米气泡具有较强的气浮机性、停留性和扩散性,其升果较弱。水质加氧后,可合理抑制河底绿脓杆菌有机溶解的全过程,减少水下氮和磷营养盐的释放。
(3)去除藻类蓝藻水华:微纳米曝气具有很强的复氧作用,可以改善水生生物的生活条件,进而控制藻类的生长发育。
(4)提高水绿化和清晰度:环境污染水质中的各种无机物和有机化学悬浮固体、活浮植物和死亡遗骸、大中型水生花渣、溶解生物渣是危害水绿化和透明度的关键化学物质。微纳米曝气能更合理地促进水生生物的生长发育,进而降低水土有机质,显著提高水质清晰度,改善水绿色。
减少污泥内源性环境污染:微纳米曝气充氧后,湖长制(5)底泥表面氧含量增加,好氧微生物菌种主题活动加强。根据生物排泄的全过程,促进污泥有机化学污染物的溶解,逐步完善无机物化底泥土壤层,阻隔内源性环境污染。
改变微纳米曝气器的通气量,随空气流量的增加,氧传质系数(Km)逐渐增大。标准氧传质效率(SOTE)随曝气量的增大而降低。结果表明,水温度对KLa和SOTE均有显著影响,随温度升高,PH升高先降后升,在pH=7.2时达到小。随着NHQ的增加,曝气组比例降低,且随浊度增加而增加。SOTE值随温度的升高而增大,与微孔曝气组的趋势一致,但其值小于微纳米曝气组。与SOTE相比,微纳米曝气比SOTE对通气量的变化更为敏感。
天津市水文局、天津市水文局、天津市水文局、天津市水文局、天津市水文局、天津市水文局等单位利用微纳曝气装置和射流曝气装置,对天津水利部城市水环境改善示范基地进行了通气改造,该工程占地面积为320000平方米。增加水体氧含量,克服了冬季运行技术难题,主要指标达到地表水IV类标准。
郝明伟[8°]主要对水中微纳米气泡的运动规律和沉降机理进行了研究,并对日本微型纳米曝气装置气泡发生器结构原理进行了研究。并对某河流曝气水质进行了改进试验,认为微纳米级曝气是一种较好的改善水体水质环境的技术。
微纳米曝气组成微生物菌种技术对水利枢纽堆积物的改善作用。科学研究结果表明,曝气区S3的相对性比附近非曝气区S2和S4的TP降低了11.6%和2.7%,曝气区S5的相对性比非曝气区S4的TP降低了32%。S3.S5和S6在曝气危害地区的相对性分别为23.0%.18.0%.10.3%。S3.S5和S6在曝气危害地区的相对性分别为22.4%.5.5%.3.8%。积聚物微生物菌种共检测22.113属,曝气前后对比,积聚物中有益菌变菌门成分增加26.42%,厚壁菌门成分增加5.25%,而标有水体富营养化的绿弯菌门成分减少9.51%,酸链球菌门成分减少5.82%,球菌门成分减少8.16%,其他类别成分弹性系数较低。