微纳米气泡发生装置主要由发生装置、微纳米曝气头和连接管组成。由曝气头根据循环泵充压。在离心作用下,使其内部产生负压区,气体根据进气口进入负压区,在罐体内部分为附近的液体带和核心汽体带,由高速运行的气石排气部下气体匀称切成直径5~30|^m的微纳米气泡。由于气泡微妙,不会受到水中气体溶解的危害,不会受到温度、工作压力等外部标准的限制,可长期停留在污水处理中,具有的气浮机实际效果。
除用于湖泊.河道的治理外,国内外很多学者也将微纳米曝气在其它领域进行相关研究。通过对一静态旋流微气泡浮选柱的使用条件的优化,并对含含水的废水进行了处理,结果表明,微泡悬浮柱对含油废水的去除率达到90%以上。对于生物净化作用,米歇森等网对用微生物与微纳米曝气法混合后,注入土壤间隙,以降解土壤中二甲苯。试验结果表明,微纳米粒曝气可以提高微生物的活性,经处理后二甲苯浓度基本被去除,微纳米泡在土壤中维持较长时间,菌株的作用也更加持久。Hotta等利用微米级曝气法在海洋环境中进行了海体底泥污染试验。研究结果表明,微纳米泡不仅能有效地消除底泥中的污染物,而且能增强污泥中的细菌活性,提高污泥的持续污染能力。将微泡气浮与普通气浮工艺相比较,采用微泡气浮和普通气浮工艺,对含油餐饮废水进行预处理,在相似条件下,微泡气浮技术具有较好的气浮性能和较高的去除率。可见,微纳米粒曝气在曝气技术上有一定的性,但微纳米曝气技术在实际应用中要把水体和气体混在一起才能曝气,怎样才能更好地推广微纳曝气技术,也是当前研究的热点。
采用微纳米气泡曝气技术项目进行藻类控制,项目分三期基本建设,总曝气面积14.5hm2。微纳米技术工程吨污水处理费用约为0.02元/m3,合理性优良。围隔实验期内,围隔内的温度范围为21.5。26.1。隔离试验结束时,三个微纳米曝气组的溶解氧浓度值在12.4mg/L左右,而空缺对照试验的溶解氧浓度值为8.7mg/L,与曝气组误差较大,达到3.7mg/L,显示了微纳米曝气的实际充氧效果。曝气组高锰酸盐指数的大污泥负荷来自曝气生物菌种组,达到50%,比立曝气组高19.8%。总磷和可溶活力磷的大污泥负荷来自曝气+锁磷剂组,各达70.3%和50%。曝气生物菌种组对叶绿素A的大污泥负荷为70.2%,比立曝气组增加33.5%,藻类总进化率的大污泥负荷为78.9%,比立曝气组增加13.9%,蓝藻减少率为86.8%。