壳程换热管之间插入螺旋扭片,螺旋扭片的 插入可以有效地改变壳程流体的流动形式,使壳 程流体产生多股自螺旋流的复杂流动形态[3],有 效提高换热管束壁面的流体速度,实现不同壳体 半径处流体的充分混合,从而达到强化传热的目 的。本文利用FLUENT软件对这种新型纵向多 螺旋流管壳式换热器的壳程湍流流动及换热进 行了三维数值模拟,根据模拟结果并对这种利用 螺旋扭片强化换热器壳程流体换热的机理进行 了有益的探讨。
1.不同换热器管束支撑方案
管壳式换热器中的折流板同时起着支撑管束和 约束壳侧流体介质的流动通道的作用。初的折流 板形式为弓形,后来又衍生出其他类型。
1. 1弓形折流板换热器
流体在弓形折流板换热器壳侧的流动是沿反复曲折通道前行的,流动方向的周期性变化可以反复以横掠的姿态冲刷管束,提高流速,增大壳侧的换热系数[3]。弓形折流板换热器壳侧的流动状况如图1所示。
由于弓型折流板结构简单,制造、安装比较容易,因而应用普遍,但也存在一些弊端,如有流动 死区,沿程压降较大,容易积垢。由于在弓形折流板窗口处管束的支撑距离是中部管束的两倍,该区域 流体在完成180度转向过程中对管束产生更多的扰动力,在较高的质量流速下易诱导换热管的振动,从而成为换热管破坏的主要原因,缩短了换热器的使用寿命[4]。
管壳式换热器由壳体、传热管束、管板、折流板(挡板)和管箱等部件组成。壳体多为圆筒形,内部装有管束,管束两端固定在管板上。进行换热的冷热两种流体,一种在管内流动,称为管程流体;另一种在管外流动,称为壳程流体。为提高管外流体的传热分系数,通常在壳体内安装若干挡板。挡板可提高壳程流体速度,迫使流体按规定路程多次横向通过管束,增强流体湍流程度。换热管在管板上可按等边三角形或正方形排列。等边三角形排列较紧凑,管外流体湍动程度高,传热分系数大;正方形排列则管外清洗方便,适用于易结垢的流体。
流体每通过管束一次称为一个管程;每通过壳体一次称为一个壳程。图示为简单的单壳程单管程换热器,简称为1-1型换热器。为提高管内流体速度,可在两端管箱内设置隔板,将全部管子均分成若干组。这样流体每次只通过部分管子,因而在管束中往返多次,这称为多管程。同样,为提高管外流速,也可在壳体内安装纵向挡板,迫使流体多次通过壳体空间,称为多壳程。多管程与多壳程可配合应用。
管壳式换热器由于管内外流体的温度不同,因之换热器的壳体与管束的温度也不同。如果两温度相差很大,换热器内将产生很大热应力,导致管子弯曲、断裂,或从管板上拉脱。因此,当管束与壳体温度差超过50℃时,需采取适当补偿措施,以消除或减少热应力。根据所采用的补偿措施,管壳式换热器可分为以下几种主要类型:
①固定管板式换热器管束两端的管板与壳体联成一体,结构简单,但只适用于冷热流体温度差不大,且壳程不需机械清洗时的换热操作。当温度差稍大而壳程压力又不太高时,可在壳体上安装有弹性的补偿圈,以减小热应力。
②浮头式换热器管束一端的管板可自由浮动,完全消除了热应力;且整个管束可从壳体中抽出,便于机械清洗和检修。浮头式换热器的应用较广,但结构比较复杂,造价较高。
③ U型管式换热器 每根换热管皆弯成U形,两端分别固定在同一管板上下两区,借助于管箱内的隔板分成进出口两室。此种换热器完全消除了热应力,结构比浮头式简单,但管程不易清洗。
④涡流热膜换热器涡流热膜换热器采用新的涡流热膜传热技术,通过改变流体运动状态来增加传热效果,当介质经过涡流管表面时,强力冲刷管子表面,从而提高换热效率。高可达10000W/m2℃。同时这种结构实现了耐腐蚀、耐高温、耐高压、防结垢功能。其它类型的换热器的流体通道为固定方向流形式,在换热管表面形成绕流,对流换热系数降低。